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Variance Partitioning 2

ABSTRACT
The basic processes in univariate statistics involve partitioning the sum of squares into two
components: explained and within. The present paper explains that the same partitioning
occurs in measurement analyses, i.e., splitting the sum of squares into reliable and
unreliable components. In addition, it will be shown how the three types of error inherent
in all statistical analyses (i.e., sampling error, model specification error, and measurement
error) impact any analysis the researcher attempts. Also emphasized will be that tests are

not reliable, rather scores have varying degrees of reliability.
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Basic Concepts in Classical Test Theory: Relating Variance
Partitioning in Substantive Analyses to the Same Process in Measurement Analyses.
Variance in the d'ependent variable is the crux of all statistical analyses, hence, it is
the focus of all statistical analyses. As an analogy, the variance observed in the dependent
variable can be viewed as making up one entire pie, €.g., as the variance increases, so
would the size of the pie--usually the size of the pie is equal to the sum of squares (SOS)
total. Further, there are three different ways to interpret variance in the dependent
variable, or “knives” which can be used to cut the pie. One knife will discriminate
between which ingredients were used, another will describe how much of which
ingredient, and yet another that will give an indication of how accurate the baking process
is (measuring cups or utensils used to make the pie actually are). In statistical analyses,
these knives are the “who,” “how,” and “reliability” partitons of the observed variance,
i.e., who accounts for the variance, how the variance is accounted for by other variables,
and the reliability of the measurement. Which knife we use depends on what question we
want to answer. Further, there is error directly associated with each knife, i.e., sampling
error, model specification error, and measurement error respectively.
In a substantive context, variance is partitioned into “who” accounts for it and

“how” it is accounted for (via which predictor variable). All substantive analyses are in
effect, regression, i.e., they all produce a y-hat and an error score. The present paper will
show that the same model that is utilized in substantive analyses for partitioning the
observed variance into explained and unexplained components, is also used to partition the
variance in a measurement context into reliable and unreliable components. Indeed, the

substantive and measurement contexts even have similarities at the sore level.
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In a measurement context, partitioning focuses on reliability. Measurement
analyses asks about the stability, equivalency, or consistency of the dependent variable
score(s). That is, with what amount of certainty can the researcher believe that the
obtained value or score will replicate in the future, or that the obtained value or score is
“true”. Reliability generally refers to the degree to which test scores are free from
measurement error (Sax, 1989). Reliability always refers to the scores obtained on an
instrument for a particular group of examinees on a particular occasion--and not the
instrument itself (Eason, 1991; Rowley, 1976; Thompson, 1994). Reliability also impacts
effect sizes in substantive research, as will be explained below.

Heuristic Examples of Substantive Analyses
Who accounts for the variance?

For answering the “who” question in substantive analyses, the variance observed is
partitioned by who (which participant) accounts for, and the amount of variance they
account for, in the total observed (or dependent variable) score. If Marjie, Tommy, and
Diane all completed a hypothetical newly formed short version of the Behavior
Assessment for Children (BASC) (Reynolds & Kamphaus, 1994) to identify future school

performance, a “who” analysis could look something like Table 1 and Figure 1.

Insert Table 1 and Figure 1 here

Thus, the sum of squares (SOS) total is partitioned into its component parts
according to who accounts for how much of the total. As with all analyses, error is a

factor. In the formula, y;= Y;+ YMean, there is no error component. This is because the
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type of error that impacts the who analysis is sampling error. If the sample is not
representative of the population, then Figure 1 will not reflect reality. For example, if the
sample is drawn from the tails of the population distribution, then the SOSwi will be
overestimated, leading to erroneous findings. However, the sampling error would not
effect the SOS at the individual score level though.
How the Variance is Accounted For

The other substantive “knife” cuts the variance into #ow it is made up. In a “how”
analysis, a predictor variable is added to see how much variance that predictor variable
accounts for, or does not account for, in the total observed variance. Assume that the
small sample utilized in Table 1 reflects the total population. Assume also that this
researcher wants to predict that an age difference as little as a few months will make a
difference on the BASC’s identification of future school performance. If all three students
above were 7 years old at the time of administration, but Marjie was 1 month past 7 years
old, Tommy was 2 months past 7 years old, and Diane was 6 months past 7 years old, then
number of months could be a predictor variable, and the “how” substantive analysis could

look like Table 2 and Figure 2.

Insert Table 2 and Figure 2 here

Error variance found in this model (y;=yhat; + emodet) Would be due to choosing

the wrong predictor variable(s); thus, model specification error--the predictor variable did

not account for all the variance in the dependent variable, meaning something else does.

In Table 2b, a regression model is utilized to partition the variance into explained and
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unexplained components to determine sow months of age explains, or does not explain,
the dependent variable variance.
!
Heuristic Examples of Measurement Analyses

As stated earlier, from a measurement perspective (the last of the three ways of
partitioning variance, depending on which questions the study wishes to answer),
reliability is the question addressed. Will these results replicate? This is important to
know for many reasons. For example, if someone’s IQ fluctuated by 50 points each time
they were tested, then those measurements on that IQ test give no dependable information
and are unreliable. Using unreliable data such as that would be as inane as attempting to
predict a person’s IQ from their shoe size: it’s not possible, i.e., not stable, not equivelant,
not consistent, NOT RELIABLE.

Taking the substantive equation y; = yhat; + e;, we substitute T (true score) for
yhat, and emc, (measurement error) for e. Thus, the equation becomes: yi=Ti + €mcas.
This equation is the true-score theory’s premise: that a person’s observed score is equal
to that person’s true score + error. True score in this sense speaks to the “pure”
indigenous trait the person holds--the true knowledge or ability (Sax, 1989). This value is
a hypothetical value and is expected to yield consistent knowledge of individual
differences. The true score is based on the premise that the person’s inherent ability is
stable, and over repeateci testing the mean of those scores would be the true value. Since
infinite numbers of repeated testing are not feasible, the obtained value + measurement
error is substituted for the true score. A measurement which contained no error, would in

fact measure only true ability, so in a sense by measuring reliability, we are approximating

true scores (Pedhazur &:Schmelkin, 1991). Since true scores are not known, then the
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amount of measurement error cannot be known either. Still, it is possible to estimate the
effect of measurement eﬁor in general (Sax, 1989). To the extent that error is eliminated,
reliability will be high. When measurement error variance is high, there must be a
corresponding decrease in reliability. Similarly, when error variance is reduced, true and
obtained scores will more closely approximate each other, thereby increasing reliability
(Sax, 1989). In classical test theory there are three ways to measure reliability:
measurement error resulting through an error in test occasions (stability), or an error in
test forms (equivalence): or an error in items (internal consistency) (Crocker & Algina,
1986). We will explore these methods in the order given.

Reliability as Stability

The test-retest method has been utilized to measure the stability of scores over a
period of time. If individuals respond consistently from one test to another, the
correlation between the test scores will be high. Some researchers point to the squared
correlation coefficient as a coefficient of stability. The time difference between tests
impacts the stability coefficients. If time intervals between tests are short, the stability
coefficients are likely to be high. If the time period is longer, the stability coefficient is
likely to be lower (Pedhazur & Schmelkin, 1991). This is one reason to speak about the
reliability of measurements and not the reliability of tests--the test is the same one given
at a different point in time, possibly yielding much different reliability coefficients as test
intervals are varied! A shorter interval usually produces higher stability coefficients than
a longer time interval. To demonstrate how a regression model can be employed in both
a substantive and measurement context, the same heuristic data set will be used in this

example as in the previdus example. If the students reported on earlier were administered
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the same test at a different point in time, a test-retest measure of reliability might look
something like Table 3 and Figure 3. Let Y, = the first administration and Y = the

second administration of the BASC.

Insert Table 3 and Figure 3 here

As can be seen in Table 3b, the derivation of the true score and measurement error in a
measurement context (i.e., partitioning the variance into reliable versus unreliable
components), is the same one employed in a substantive context utilizing yhats and error
scores to partition variance into explained versus unexplained components. The
mechanics of the partitioning is the same, only the purposes of the partitoning differ.
Following the pr§mise of true-score theory, any error inherent in this design would
be due to the measurement process, and not changes in the individual themselves, because
as stated earlier, the “pure” indeginous trait the person holds, is consistently present.
Reliability as Equivalence
These same methods can be used in the second measure of reliability - the
equivalence, or parallel forms of a test. In this measure, two or more forms of a test are
constructed and administered to the same person at approximately the same time. To
eliminate practice or transfer effects, half of the participants take one form followed by
the other, and the sequence is reversed for the other half of participants. The correlation
between the scores on the forms is a measure of their equivalence, and is designated as a

reliability index. When squared, this reliability index is the reliability coefficient of the

measurement (Gronlund & Linn, 1990). All reliability coefficients are squared concepts.



Variance Partitioning 9

As stated earlier, this example elucidates the fact that a reliability coefficient places
a ceiling on effect sizes (Rienhardt, in press). From a reliability standpoint, the €meas is the
part of the pie that cannot be eaten (explained). As can be seen in Figure 4, the emcs =
20%. If we add a predictor variable that explained all the remaining 80% of the pie, an
effect size could not exceed that 80%. In the worst case scenario, a dependent variable is
measured such that scores are perfectly unreliable, hence, the effect size will be “0”, and
the results will not be statistically significant at any sample size, even an incredibly large

one (Reinhardt, in press).

Insert Figure 4 here

Parallel forms are never perfectly correlated and the further from a correlation of 1
that they differ, the greater the amount of unreliability. However, because equivalence is
determined by correlating scores on tests designed to be parallel, the unreliability must
come from differences in item sampling and not, as in measures of stability, changes within
the individuals themselves. The exact same methods for deriving T scores and
measurement error utilized in the test-retest example are employed in the equivalence
check on reliability.

Reliability as Consistency

The final technique of estimating reliability, is the internal consistency method.
Because of practicality, most teachers, psychologists and researchers will usually not
administer the same test twice, or develop an alternate form of an instrument. In most

cases researchers would like to estimate reliability from one administration of an

10
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instrument. This desire has led to measures of internal consistency, historically, the split-
half method. In this met}lod, one test or instrument is split in half and the 2 halves are
treated as alternate forms of the other, thereby obviating the need to construct more than
one instrument (Gronlund & Linn, 1990).

Many different ways of splitting a test are available, but the most important
consideration is that the two halves be parallel. If we use the same example employed
previously, and split the items by way of even (E) or odd numbers (O), the resulting scores

would look like Table 4 and Figure S.

Insert Table 4 and Figure 5 here

When a correlation coefficient is computed on a split-half reliability measure, the resulting
correlation is a measulre of the “agreeability” between one half of the instrument and the
other. When squared, such correlations provide a measure of reliability for half an
instrument, but not for the instrument as a whole. To estimate the reliability of the whole
instrument from knowledge of the correlation between the halves, the Spearman-Brown
formula must be employed (Thorndike, Cunningham, Thorndike, & Hagen, 1991), and is
as follows:

2 X the correlations between the halves
1 + the correlations between the halves

From the example in Table 4: 2(.94)/1+.94 = 1.88/1.94 = .97, I* = .94
Thus the actual correlation between the two halves of the test is .97, and when squared,

this is the reliability of the measurement in terms of consistency (.94).

11
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Coefficient Alpha o (also named, “Cronbach’s alpha,” (Cronbach, 1951)) is
another measure of inter;lal consistency that is a squared concept, even though there is no
squared sign in the symbol designating .. Theoretically, coefficient alpha is an estimate of
the squared correlation expected between two tests drawn at random from a pool of items
similar to the items in the test under construction (Pedhazur & Scmelkin, 1991).
Coefficient alpha can be used as an index of internal consistency conceptually exhibiting
how item responses correlate with total test score, and employs the same concept as the
split-half measure of internal consistency, except that coefficient alpha pairs each item on
the instrument with all combinations of all other items. Coeficient alpha is superior to the
use of split-half measures, because as stated earlier, there are many different ways in which
to split an instrument. Estimates associated with different splits for the same data may
yield contradictory results (Sax, 1989). For example, a 4-item test has 3 splits, a 6-item
test has 10 splits; and for a test with 10 items, there are 126 different ways to split the test
(Reinhardt, in press)! So, as the nﬁmber of items increase, so do the number of possible
splits. The formula for coefficient alpha is as follows:

a = kk-1(1-Zo*/c%)

k is the number of items
Yo% = the sum of the variances of the items
o’ = the variance of the total score, or composite score

where k is the number of items; Yo’ = the sum of the variances of the items; and o= the
variance of the total score, or composite score (Pedhazur & Schmelkin, 1991). Using our
data set of the children’s scores on the BASC, coefficient alpha would look something like

Table 5.

12
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Insert Table 5 here

The P values in Table 5 are derived by finding the ratio of scores of 1 on an item, to a
score of 0. In item one thisis 2/3 =.66. The P value is also an index of item
homogeneity, i.e., how alike the P values are gives an indication as to how varied the
scores are. The item variance is found and summed (in this example, item variance =
1.05). The composite score is computed by finding the variance of the row totals:
7+8+3=18. In this case the composite variance = 7.02. The numbers are then plugged
into the above formula giving a coefficient alpha: 8/7 (1-1.05/7.02) = .97. Therefore, we
have an estimate of the reliability of the items and how they relate to each other, and to
total test variance.

Upon examination of the formula for coefficient alpha, we find that the total item
variance is the numerator, and total test or composite score, is the denominator. The
alpha coefficient is 1 minus this ratio. Therefore, it behooves the test constructor to
maximize total test variance, while item variance is minimized. As can be seen from the
following hypothetical data sets, the alpha coefficient can even be negative (Reinhardt, in
press). This usually happens when item variance is larger than total test variance (Arnold,

1996). Table 6 and Figure 6 are employed to help make these concepts concrete.

Insert Table 6 and Figure 6 here

13
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From these results in this data set, it can be inferred that maximum total test
variance is important to maximize coefficient alpha, and that total test variance has more
impact on alpha than item variance.

Another measure of internal consistency for dichotomously-scored items is the
KR-20 formula. The KR20 formula and the alpha coefficient formula are the same, except
for the derivation of item variance, as can be seen below:

KR-20 = k/k-1(1-Z pq/c’rour)
a= kk-1(1- 6%/ 10m)
But the formulas are algebraically equivalent, even though the ways for computing item
variance seem different.
Summary

In sum, the present paper has explained the three fypes of statistical analyses and
the corresponding error which accompanies each. Two of the analyses are substantive
(“who” and “how”), and one involves a measurement perspective (reliability). Further, the
same method to analyze the data (regression) has been utilized in both substantive and
measurement analyses to partition explained versus unexplained variance, and reliable
versus unreliable variance in the dependent variable, according to which question the
researcher wishes to answer. The “classical” methods of estimating reliability have been

explained with an emphasis on coefficient alpha.

14
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Table 1

Hypothetical data for a “who” analysis

Student Y Y-Mean ¥
Marjie 7 1 1
Tommy 8 2 4
Diane 3 -3 9
SUMS 18 0 14
MEAN 6

Variance Partitioning 16

Figure 1. Venn diagram displaying
partitioned variance reflecting a “who”

analysis.

17

Note. M =Marjie, T = Tommy,

D = Diane.
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Table 2 Figure 2. Venn diagram displaying

“How” analysis with predictor “X” being partitioned variance reflecting a “how”

months of age analysis.

Student Y X x x \\\

Marjie 7 1 -2 4 \\\ \
co N

Tommy 8 2 -1 1

Diane 3 6 -3 9

SOS yhat = 12.10
SUMS 18 9 0 14

SOS emode = 1.90
MEAN 6 3

SDx 2.65 ’

COVy -6.5

Ty -93

r .86

b. Student Y X Yhat

Marjie 7 1 7.86 -.86
Tommy 8 2 6.93 1.07
Diane 3 6 321 -21
SUMS 18 9 18 0
MEAN 6 3

Student vhat

vhat?  eped  €med

Marjie 1.86 3.46 -86 .74
Tommy .93 .86 107 1.14
Diane -2.79 778 -21 .04
Sums 12.10 1.90

18



Table 3

Test - retest method on hypothetical

BSAC scores

Student Y; v; vi Yo va  ¥i
Marjie 7 1 1 S5 -33 .11
Tommy 8 2 4 7 167 279
Diane 3 -3 9 4 -133 177
SUMS 18 14 16 4.67
MEAN 6 5.33

SD 2.65 1.53

COV yy2 3.5

Ty1y2 .86

r 74

b. Regression model for test-retest data,

substituting T for Y and epea for e

Student T t  t Cncas €mem
Marjie 5.52 -49 24 148 219

Tommy 8.5 249 62 -5 25

Diane 4.03 198 39 -1.0 1.06
SUMS 180 0 104 3.5
MEAN 6.0

13
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Figure 3. Venn diagram partitioning
variance into reliable versus unreliable

components by way of stability.

N

¥,

NN

SOSTM =10.5

SOS emeas=3.5
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Figure 4. Example of a reliability coefficient between parallel forms of an instrument, placing a

ceiling on effect size.

i2=.80  P<.80

Table 4 Figure 5. Venn diagram partitioning
Split-half method on hypothetical BASC variance into reliable versus unreliable
scores components by way of consistency.

Student O o o’E e ¢
Marjie 3 .7 49 4 33 1l
Tommy 3 .7 .49 5 13138
Diane 1-13 17 2 -1.7 2.8
SUMS 7 27 11 4.7

MEANS 23 3.7
SD 1.15 1.53
COV, 1.67
Toc 94
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Table 5
Student Items
1 2 3 4 5 6 i 8 Score
Marjie 1 1 1 1 0 1 1 1 7
Tommy 1 1 1 1 1 1 1 1 8
Diane 0 0 1 0 0 1 0 1 3
P .66 .66 100 .66 33 100 .66 100 > 18
q 33 33 0 33 66 O 33 0
o’Pxq) 21 21 O 21 21 0O 21 0 1.05

Table 6

Probability Target Matrix Depicting Effects of Item and Composite Variance on Coefficient Alpha

a. MIN TEST VARIANCE, MAX ITEM VARIANCE, HOMOGENEOUS p
Known Results for the population

Item
n; 1 2 3 4 5 6 7 TOTAL
1 1 0 1 0 1 0 1 4
2 0 1 0 1 0 1 0 3
3 1 0 1 0 1 0 1 4
4 0 1 0 1 0 1 0 3
5 1 0 1 0 1 0 1 4
6 0 1 0 1 0 1 0 3
7 1 0 1 0 1 0 1 4
8 0 1 0 1 0 1 0 3
9 1 0 1 0 1 0 1 4
10 0 1 0 1 0 1 0 3
P .5 .5 .5 S 5 5 5 R
var, .25 25 25 25 25 25 25 25
o = 1166667 x (1-(1.75/.25)) = -7

Note. Table adapted from “Factors Affecting Coefficient Alpha: A Mini Monte Carlo
Study,” by B. Reinhardt, (in press), in B. Thompson (Ed.), Advanéés in social science methodology (Vol.

4). Greenwich, CT: JAIPress. Adapted with permission.

21
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b. MOD TEST VAR, MOD ITEM VAR, HETEROGENEOUS p
Known Results for the Population

Item
n 1 2 3 4 5 6 7 TOTAL
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 1 1 1 1 4
7 0 0 0 0 1 1 1 3
8 0 0 0 1 1 1 1 4
9 0 0 0 0 1 1 1 3
10 0 0 0 1 1 1 1 4
p 0 0 0 3 .5 5 .5
vary, O 0 0 ©.21 25 25 .25 3.36

o = 1.16667 x (1 - (9600001 /3.36)) =.8333333
Note. Table adapted from “Factors Affecting Coefficient Alpha: A Mini Monte Carlo
Study,” by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAI Press. Adapted with permission.

22
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c. MAX TEST VAR, MAX ITEM VAR, HOMOGENEOUS p
Known Results for the population

Item

n; 1 2 3 4 5 6 7 TOTAL
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 7
7 1 1 1 1 1 1 1 7
8 1 1 1 1 1 1 1 7
9 1 1 1 1 1 1 1 7
10 1 1 1 1 1 1 1 7
) .5 5 .5 .5 5 5 .5

var, .25 25 25 25 25 25 25 12.25

o = 1.166667 x (1- (1.75/1225)) = 1
Note. Table adapted from “Factors Affecting Coefficient Alpha: A Mini Monte Carlo

Study,” by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.

4). Greenwich, CT: JAIPress. Adapted with permission.

23
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Figure 6. Variance of Scores on Dichotomously-Scored Items With 10 Examinees

25 : X
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Note. With 10 examinees cémpleting a given item, there are 11 possible p values, each with an

associated item variance.

Note. Table adapted from “Factors Affecting Coefficient Alpha: A Mini Monte Carlo

Study,” by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol.
4). Greenwich, CT: JAIPress. Adapted with permission.
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